框架已开始出现,以对提供沉浸式,直观的接口提供沉浸式,直观的界面的虚拟,增强和混合现实(VAM)技术来促进人机互动。然而,这些框架未能捕获VAM-HRI的生长子场的关键特性,并且由于连续尺度而难以持续应用。这项工作通过创建用于组织VAM-HRI系统(TOKC)的关键特征来构建这些先前的框架。 Tokcs离散地分离出现在先前作品中使用的连续尺度,以获得更一致的分类,并增加与机器人的内部模型,锚点位置,可操纵性和系统的软件相关的额外特征。为了展示工具的能力,TOKCS应用于来自第四届VAM-HRI车间的十篇论文,并检查了关键趋势和外卖。这些趋势突出了TOKCS的表现能力,同时还帮助框架更新的趋势和VAM-HRI研究的未来工作建议。
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Quantum kernel methods, i.e., kernel methods with quantum kernels, offer distinct advantages as a hybrid quantum-classical approach to quantum machine learning (QML), including applicability to Noisy Intermediate-Scale Quantum (NISQ) devices and usage for solving all types of machine learning problems. Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space. For machine learning, the notion of similarity assumes that points close in the feature space should be close in the machine learning task space. In this paper, we discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings (a.k.a. quantum feature encodings) that are specific to machine learning tasks. Such task-specific optimal quantum embeddings, implicitly supporting feature selection, are valuable not only to quantum kernel methods in improving the latter's performance, but they can also be valuable to non-kernel QML methods based on parameterized quantum circuits (PQCs) as pretrained embeddings and for transfer learning. This further demonstrates the quantum utility, and quantum advantage (with classically-intractable quantum embeddings), of quantum kernel methods.
translated by 谷歌翻译
量子机学习(QML)是使用量子计算来计算机器学习算法的使用。随着经典数据的普遍性和重要性,需要采用QML的混合量子古典方法。参数化的量子电路(PQC),特别是量子内核PQC,通常用于QML的混合方法中。在本文中,我们讨论了PQC的一些重要方面,其中包括PQC,量子内核,具有量子优势的量子内核以及量子核的训练性。我们得出的结论是,具有混合核方法的量子核,也就是量子核方法,具有明显的优势作为QML的混合方法。它们不仅适用于嘈杂的中间量子量子(NISQ)设备,而且还可以用于解决所有类型的机器学习问题,包括回归,分类,聚类和降低尺寸。此外,除了量子效用之外,如果量子内核(即量子特征编码)在经典上是棘手的,则可以获得量子优势。
translated by 谷歌翻译
我们介绍了IST和Unmabel对WMT 2022关于质量估计(QE)的共享任务的共同贡献。我们的团队参与了所有三个子任务:(i)句子和单词级质量预测;(ii)可解释的量化宽松;(iii)关键错误检测。对于所有任务,我们在彗星框架之上构建,将其与OpenKIWI的预测估计架构连接,并为其配备单词级序列标记器和解释提取器。我们的结果表明,在预处理过程中合并参考可以改善下游任务上多种语言对的性能,并且通过句子和单词级别的目标共同培训可以进一步提高。此外,将注意力和梯度信息结合在一起被证明是提取句子级量化量化宽松模型的良好解释的首要策略。总体而言,我们的意见书在几乎所有语言对的所有三个任务中都取得了最佳的结果。
translated by 谷歌翻译
到目前为止,分子科学的深度学习主要集中在2D分子图上。然而,最近,由于其科学意义和在现实世界应用中的重要性,已经进行了将其扩展到3D分子几何形状。 3D距离几何图表示(DG-GR)采用代表3D图几何形状的统一方案(距离)。它与图形的旋转和翻译是不变的,它反映了配对节点相互作用及其通常局部性质,尤其与3D分子几何相关。为了促进分子科学深度学习中3D分子几何形状的融合,我们采用了具有动态注意力的新图形注意网络(GATV2)与DG-GR一起使用,并提出了3D距离几何图形注意网络(DG-GAT)。 GATV2非常适合DG-GR,因为注意力可能因节点和节点之间的距离而异。 ESOL和FREESOLV数据集的DG-GAT的实验结果显示出基于2D分子图的标准图卷积网络的重大改进(分别为31%和38%)。 QM9数据集也是如此。我们的工作证明了基于3D分子几何形状的深度学习的DG-GAT的效用和价值。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
面向概念的深度学习(CODL)是满足深度学习未来挑战的一般方法:(1)学习几乎没有外部监督,(2)应对与培训例子不同的分布的测试例子, (3)与符号AI整合深入学习。在codl中,如在人类学习中,基于概念样本来了解的概念表示。对比自我监督学习(CSSL)提供了一个有希望的方法,因为它:(1)使用数据驱动的关联,逃离语义标签,(2)支持增量和持续的学习,远离(大)固定数据集和(3)可容纳紧急目标,远离固定目标(任务)。我们讨论使用CSSL讨论概念表示学习的主要方面。这些包括双层概念表示,用于特征表示的CSSL,示例性相似度测量和自我监督的关系推理,增量和持续的CSSL和对比的自我监督概念(类)增量学习。讨论利用认知神经科学和CSSL的最近发现。
translated by 谷歌翻译
我们利用量子退火器的有效二进制优化能力提出了晶格QCD数据的回归和压缩算法。在回归算法中,我们将输入和输出变量与稀疏编码机学习算法中的相关性进行编码。训练有素的相关模式用于预测来自在晶格上测量的其他可观察到的看不见的晶格配置的晶格QCD可观察。在压缩算法中,我们将浮点数的晶格QCD数据定义到与来自一组基向量重建输入数据的二进制系数的映射。由于重建不是精确的,因此映射定义了有损压缩,但是,相当少量的二进制系数能够重建晶格QCD数据的输入向量向量与重建误差小于统计波动的重建误差。在这两个应用中,我们使用D波量子退火器来解决机器学习算法的NP硬二元优化问题。
translated by 谷歌翻译
通过潜在树形图形模型建模高维数据的分布是多个科学域中的一种普遍存在的方法。常见的任务是推断底层树结构,仅给出其终端节点的观察。树恢复的许多算法是计算密集型的,这将其适用于中等大小的树木。对于大树,一种共同的方法,被称为剥夺和征服,是以两步恢复树结构。首先,将结构分别恢复终端节点的多个可能随机子集。其次,合并生成的子树以形成一棵树。在这里,我们开发频谱自上而下的恢复(STDR),确定性分割和征服方法来推断出大潜在树模型。与以前的方法不同,STDR基于与观察到的节点相关的合适的LAPLACIAN矩阵的FIEDLER向量,以非随机方式分配终端节点。我们证明,在某些条件下,这种分区与树结构一致。反过来,这导致了小远子的显着更简单的合并程序。我们证明了STDR在统计上是一致的,并绑定了以高概率准确恢复树所需的样本数量。使用来自近几种常见树模型的模拟数据在系统发育中,我们证明STDR在运行时具有显着的优势,具有改善或类似的准确性。
translated by 谷歌翻译